英国房地产支付价格
该数据集包含自 1995 年以来有关英格兰和威尔士房地产价格的数据。未压缩的大小约为 4 GiB,在 ClickHouse 中大约需要 278 MiB。
来源:https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads 字段说明:https://www.gov.uk/guidance/about-the-price-data
包含 HM Land Registry data © Crown copyright and database right 2021.。此数据集需在 Open Government License v3.0 的许可下使用。
创建表
CREATE TABLE uk_price_paid
(
price UInt32,
date Date,
postcode1 LowCardinality(String),
postcode2 LowCardinality(String),
type Enum8('terraced' = 1, 'semi-detached' = 2, 'detached' = 3, 'flat' = 4, 'other' = 0),
is_new UInt8,
duration Enum8('freehold' = 1, 'leasehold' = 2, 'unknown' = 0),
addr1 String,
addr2 String,
street LowCardinality(String),
locality LowCardinality(String),
town LowCardinality(String),
district LowCardinality(String),
county LowCardinality(String)
)
ENGINE = MergeTree
ORDER BY (postcode1, postcode2, addr1, addr2);
预处理和插入数据
我们将使用 url
函数将数据流式传输到 ClickHouse。我们需要首先预处理一些传入的数据,其中包括:
- 将
postcode
拆分为两个不同的列 -postcode1
和postcode2
,因为这更适合存储和查询 - 将
time
字段转换为日期因为它只包含 00:00 时间 - 忽略 UUid 字段,因为我们不需要它进行分析
- 使用 transform 函数将
Enum
字段type
和duration
转换为更易读的Enum
字段 - 将
is_new
字段从单字符串(Y
/N
) 到 [UInt8](/docs/zh/sql-reference/data-types/int-uint.md#uint8-uint16-uint32-uint64-uint256-int8-int16-int32-int64 -int128-int256) 字段为 0 或 1 - 删除最后两列,因为它们都具有相同的值(即 0)
url
函数将来自网络服务器的数据流式传输到 ClickHouse 表中。以下命令将 500 万行插入到 uk_price_paid
表中:
INSERT INTO uk_price_paid
WITH
splitByChar(' ', postcode) AS p
SELECT
toUInt32(price_string) AS price,
parseDateTimeBestEffortUS(time) AS date,
p[1] AS postcode1,
p[2] AS postcode2,
transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,
b = 'Y' AS is_new,
transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration,
addr1,
addr2,
street,
locality,
town,
district,
county
FROM url(
'http://prod.publicdata.landregistry.gov.uk.s3-website-eu-west-1.amazonaws.com/pp-complete.csv',
'CSV',
'uuid_string String,
price_string String,
time String,
postcode String,
a String,
b String,
c String,
addr1 String,
addr2 String,
street String,
locality String,
town String,
district String,
county String,
d String,
e String'
) SETTINGS max_http_get_redirects=10;
需要等待一两分钟以便数据插入,具体时间取决于网络速度。
验证数据
让我们通过查看插入了多少行来验证它是否有效:
SELECT count()
FROM uk_price_paid
在执行此查询时,数据集有 27,450,499 行。让我们看看 ClickHouse 中表的大小是多少:
SELECT formatReadableSize(total_bytes)
FROM system.tables
WHERE name = 'uk_price_paid'
请注意,表的大小仅为 221.43 MiB!
运行一些查询
让我们运行一些查询来分析数据:
查询 1. 每年平均价格
SELECT
toYear(date) AS year,
round(avg(price)) AS price,
bar(price, 0, 1000000, 80
)
FROM uk_price_paid
GROUP BY year
ORDER BY year
结果如下所示:
┌─year─┬──price─┬─bar(round(avg(price)), 0, 1000000, 80)─┐
│ 1995 │ 67934 │ █████▍ │